Translation of two nested genes in bacteriophage P4 controls immunity-specific transcription termination.
نویسندگان
چکیده
In phage P4, transcription of the left operon may occur from both the constitutive PLE promoter and the regulated PLL promoter, about 400 nucleotides upstream of PLE. A strong Rho-dependent termination site, timm, is located downstream of both promoters. When P4 immunity is expressed, transcription starting at PLE is efficiently terminated at timm, whereas transcription from PLL is immunity insensitive and reads through timm. We report the identification of two nested genes, kil and eta, located in the P4 left operon. The P4 kil gene, which encodes a 65-amino-acid polypeptide, is the first translated gene downstream of the PLE promoter, and its expression is controlled by P4 immunity. Overexpression of kil causes cell killing. This gene is the terminal part of a longer open reading frame, eta, which begins upstream of PLE. The eta gene is expressed when transcription starts from the PLL promoter. Three likely start codons predict a size between 197 and 199 amino acids for the Eta gene product. Both kil and eta overlap the timm site. By cloning kil upstream of a tRNA reporter gene, we demonstrated that translation of the kil region prevents premature transcription termination at timm. This suggests that P4 immunity might negatively control kil translation, thus enabling transcription termination at timm. Transcription starting from PL proceeds through timm. Mutations that create nonsense codons in eta caused premature termination of transcription starting from PLL. Suppression of the nonsense mutation restored transcription readthrough at timm. Thus, termination of transcription from PLL is prevented by translation of eta.
منابع مشابه
Control of transcription termination by an RNA factor in bacteriophage P4 immunity: identification of the target sites.
Prophage P4 immunity is elicited by a short, 69-nucleotide RNA (CI RNA) coded for within the untranslated leader region of the same operon it controls. CI RNA causes termination of transcription that starts at the promoter PLE and prevents the expression of the distal part of the operon that codes for P4 replication functions (alpha operon). In this work, we identify two sequences in the untran...
متن کاملNonsense-mediated mRNA decay among coagulation factor genes
Objective(s): Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation fact...
متن کاملComplete genomic sequence of SfV, a serotype-converting temperate bacteriophage of Shigella flexneri.
Bacteriophage SfV is a temperate serotype-converting phage of Shigella flexneri. SfV encodes the factors involved in type V O-antigen modification, and the serotype conversion and integration-excision modules of the phage have been isolated and characterized. We now report on the complete sequence of the SfV genome (37,074 bp). A total of 53 open reading frames were predicted from the nucleotid...
متن کاملIn vitro transcription from the late promoter of bacteriophage P4.
The late genes of satellite bacteriophage P4 are cotranscribed from a single promoter which shares little homology with known classes of Escherichia coli promoters (E. Dale, G. Christie, and R. Calendar, J. Mol. Biol. 192:793-803, 1986). In a coupled transcription-translation system, the P4 late gene promoter was activated by either the delta protein of P4 or the ogr protein of helper phage P2 ...
متن کاملThe moonlighting function of bacteriophage P4 capsid protein, Psu, as a transcription antiterminator
Psu, a 20-kD bacteriophage P4 capsid decorating protein moonlights as a transcription antiterminator of the Rho-dependent termination. Psu forms specific complex with E.coli Rho protein, and affects the latter's ATP-dependent translocase activity along the nascent RNA. It forms a unique knotted dimer to take a V-shaped structure. The C-terminal helix of Psu makes specific contacts with a disord...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 181 17 شماره
صفحات -
تاریخ انتشار 1999